导弹管理论文

发布时间:2021-10-19
导弹管理论文

  导弹(guided missile)依靠自身动力装置推进,由制导系统导引、控制其飞行弹道,将战斗部导向并摧毁目标的武器。下面小编给大家分享一些导弹管理论文,大家快来跟小编一起欣赏吧。

  导弹管理论文篇一

  反潜导弹射击精度分析

  【摘 要】反潜导弹是一种现代高效能反潜武器。本文主要介绍了雷、伞分离系统对弹道的影响以及反潜导弹的入水误差。

  【关键词】反潜导弹;射击精度

  中图分类号:e927

  反潜导弹是导弹技术和水中兵器技术相融合而产生的一种现代高效能反潜武器,战斗部按其携带武器可分为反潜自导鱼雷或核装药武器。

  目前,典型的潜射反潜导弹的作战过程如下:舰艇使用声纳探测到目标潜艇后,进行识别、跟踪,再通过指控系统解算射击诸元并传送给导弹。在符合发射条件后发射导弹,导弹按照设定的弹道出水,出水后助推器点火,导弹飞向目标区。到达目标区后,自导鱼雷脱离火箭入水,按预定程序自行搜索、跟踪直至命中目标。与反潜鱼雷相比,反潜导弹在遂行反潜作战行动中的使用具有其独特的特点。

  一、反潜导弹的特点

  二战后,潜艇的水下速度大大增加,特别是核动力潜艇,不仅是续航力大大增加,其最大航速也大幅提高。与此同时,反潜鱼雷的最大速度还是停留在40~50kn左右。这样在鱼雷对水下潜艇进行攻击时,若水下潜艇采用最大航速进行规避,则鱼雷需要追击的距离会大大增加,直接影响了鱼雷的作战效能。如鱼雷以50kn的速度击功10km外的潜艇,而潜艇以40kn的速度背向鱼雷来向进行规避,则鱼雷要命中潜艇就需要少90km。这显然已经超出了绝大部分鱼雷的航程。反观反潜导弹,通过火箭在空中的高速飞行,能将鱼雷远距离迅速投送到目标附近,受介质密度的影响,与反潜鱼雷相比,导弹在空气中受到的阻力远小于鱼雷在水中的阻力,因此,反潜导弹无论是在飞行速度还是飞行距离方面都远远超过鱼雷。

  反满导弹一般是在超视距条件下使用,其命中精度是评价其战术性能的重要指标。反潜导弹的命中精度大致由战斗部(鱼雷)水下命中精度、入水弹道和导弹入水精度两方面决定。鱼雷命中精度由其整体性能决定,本文只分析入水弹道及反潜导弹入水精度。

  三、雷、伞分离系统对弹道的影响

  火箭将鱼雷助飞到一定的高度,在一定的速度、角速度、姿态条件下雷、箭分离,接着打开降落伞,鱼雷在降落伞的减速和稳定作用下,以一定的入水条件。如:攻角、速度、姿态角的限制下入水。

  初始小攻角对雷伞系统初始弹道影响较大,而对接近入水时的弹道影响较小,对入水角的影响也不十分明显。如某型火箭助飞鱼雷分离攻角α0=00时,入水角为-680。而α0=±20时,初始攻角对入水角的影响对应入水角的增量约为±20。

  而分离姿态角对雷伞系统有较大的影响。图1给出了某型火箭助飞鱼雷α0=00时分离姿态角分别为-100、00、100时的雷伞系统空中弹道。计算结果表明分离姿态角对雷伞系统有较大的影响。当θ0=-100时雷伞系统迅速下降。而θ0=100时,雷伞系统向上运动高度约70m,到达最高点后迅速下降,雷伞系统滞空时问变化也较大,对入水角也有较大的影响,计算获得入水角分别为-56.20、-680、-760。在入水角为-760<θ<-300时,入水速度小于50m/s,初始攻角为-80<α<80,分离速度为0.65~0.9马赫数的条件下。鱼雷与火箭的分离条件应为:分离高度75m   四、反潜导弹命中精度

  一般情况下,反潜导弹入水点散布按纵向(距离)、横向(方向)分别进行分析计算。纵向散布误差由飞行速度误差、飞行时间误差、发射点到反潜导弹距离的测量误差及风等随机因素产生的误差组成。反潜导弹横向散布误差由方向陀螺仪漂移误差、空气阻力和主动推力误差、发射时瞄准误差、在不可控飞行段由于风等随机因素组成。在靶场条件下,由于技术和设备原因引起的散布称为靶场散布。在舰艇上发射反潜导弹时舰艇位置散布称为舰艇散布。一般条件下,舰艇散布要大于靶场散布,因为在舰艇上发射反潜导弹时存在附加扰动因素(发射舰艇的位置、速度、摇摆、振动等)而最终影响反潜导弹入水位置。反潜导弹海上入水点位置具有随机性。对某次射击来说,我们不能够事先确定反潜导弹实际入水点偏离预定入水点数值的大小和方向,只能确定在某一范围内误差的概率。反潜导弹入水点散布服从正态分布,且等密度分布曲线是一个椭圆,见图1。

  x轴是发射方向,z轴垂直于发射方向,图中曲线为反潜导弹下落抛物线,从内至外,分别是一倍至五倍的概率误差(中央误差)椭圆。主轴半径等于1倍中央误差 ,(纵向)和 (横向)的椭圆,称为单位分布椭圆。战斗部入水点在平面坐标系中的密度分布规律服从正态分布 ,由下式表示。

  (1)

  式中 , 分别为距离和方向上的中央误差; z 为随机坐标点; 为拉普拉斯函数自变量。

  如果散布中心不在坐标原点,而在坐标(x0,z0)点 ,由平面散布律用下式表示

  (2)

  从式(1)和式(2)可以看出,确定反潜导弹概率密度的基本参数是沿发射方向的中央误差 和垂直于发射方向的中央误差 。随着 , 值的增加,概率密度降低,反潜导弹命中概率下降。 , 可通过靶场射击计算获得。

  四、结论

  在舰艇上由于其他附加因素的干扰,会大大增大射击散布,这种增大了的散布对发射反潜导弹是极为不利的。因此在舰艇上使用反潜导弹时,还要进一步做以下工作。一是要适时计算并修正舰艇速度和舰艇横、纵摇摆影响;二是要及时测量反潜导弹舱室温度,减小发射时发射药温影响;三是适时计算和修正自然风、大气温度和大气密度引起的纵横向偏差;四是必须采用高精度反潜导弹武器瞄准系统,减小发射系统高低角误差的均方差值和方向角误差的均方差值,改善和优化射击指挥软件和发射装置的瞄准精度,就可以达到减小高低角误差的均方差值和方向角误差的均方差值。在投入相对较少情况下,可以得到较好的射击效果 。

  参考文献:

  [1] 瞿东辉.舰载反潜导弹攻击方式及入水精度分析.数字技术与应用,2010.3.160-161.

  [2] 王晓娟、张宇文.火箭助飞鱼雷和降落伞系统空中弹道研究.舰船科学技术 ,1998.4.37-40.

点击下页还有更多>>>导弹管理论文

  导弹管理论文篇二

  导弹控制系统优化研究

  摘 要

  导弹控制系统作为导弹系统的重要组成部分,对于导弹的正常工作有重要的意义,目前经典控制方法和现代控制方法在导弹控制系统中的应用都存在一定的局限性,因此,本文通过对经典和现代控制方法在导弹控制系统设计中的应用进行全面比较分析,进一步提出对导弹控制系统的优化方法,为导弹控制系统的性能稳定、准确定位等都提供了更有效保证。

  【关键词】导弹控制系统 优化技术

  1 引言

  通常导弹控制系统的控制性不是很稳定,往往将这样的特性称为动态性,基于这样的现状下,导弹控制系统需要进一步进行优化研究,以提升其稳定性。然而,传统的导弹系统的优化控制方法,并不适用于所有的导弹,而只是适用于中小规模、函数性态相对简单的导弹控制系统的优化。目前导弹系统是一个包含多个领域的大型综合系统,包括几何外形分析、气动分析、隐身分析和结构设计等,目前所使用的经典优化设计方法并不能对其起到作用。综合优化设计方法是集合了多个学科的知识,对大规模的导弹系统的优化设计进行有效解决的方法,它在控制系统的优化设计的实施过程中,主要通过对分布式计算机网络的有效利用,将多个领域的知识进行综合处理,最终得到控制系统的优化设计方法,综合应用到优化设计的全部过程中,实现对多个领域的知识的充分利用的同时,也进一步促使了系统之间的相互作用所产生的协同效应,实现导弹控制系统的优化设计。

  2 导弹控制系统的组成

  导弹控制系统主要由综合控制电路、舵系统和惯性组件组成。控制系统主要通过对导弹舵面的有效操纵来实现对导弹的整个飞行轨迹的控制。其中:惯性组件包括三只框架式自由角陀螺仪、两只线加速度计和三只液环式角加速度计,分别用于测量导弹弹体的姿态角信号、线加速度信号和角加速度信号。

  综合控制电路由数字电路和各种特定功能的模拟电路组成,包括固态继电器、运算放大电路、跟踪记忆电路、归零装置、功率驱动模块、变结构控制电路等,用于实现传感器信号的传递、变换、运算、放大、阻尼矫正、pid控制和导弹控制系统工作状态、工作阶段的切换等功能。舵系统由功率驱动模块、舵机、传动机构、舵面和舵反馈信号电路组成。某些导弹使用不具有反馈回路的开环舵系统,其功能是根据舵控信号开环控制舵面偏转运动。

  3 经典控制方法在导弹控制系统中应用及其局限性

  (1)导弹在飞行过程中存在各种不确定性。为提升导弹飞行过程中的稳定性,可以通过添加测量组件,并进一步用其对下一步的飞行路径进行有效预测。然而经典方法对确定的线性化模型进行设计时,优化的设计方法主要是通过利用稳定裕度法对不确定性问题进行预测。按照这种方法进行优化设计的控制系统,不但要具有动态性,同时还需要具备抗干扰性,然而这种方法设计的控制系统最终对于动态的品质有一定的影响。因此,为确保系统具有一定的稳定裕度,往往采取折中的设计手法。

  (2)利用稳定裕度进行设计的基本目标是提升系统的稳定性和降低其干扰性,采用经典控制方法设计的控制系统往往会因为系统的鲁棒性较差而难以满足基本需求。

  (3)在于对象本质的非线性。针对比较繁琐的非线性控制系统,往往不只是单纯地对泰勒级数的应用来对系统进行优化设计,往往也得有针对性地采取非线性控制方法。因此,面对越来越复杂的环境的变化,对导弹控制系统优化设计方法研究变得越来越有必要。

  4 现代控制方法在导弹控制系统设计中的应用

  不同于经典控制方法,现代控制方法主要通过对抑制参数的把控及对各种动态信息的及时追踪,使得对导弹的动态性、干扰性能够进行有效控制。这也是现代控制法所优于传统控制法的方面,基于这样的性能优势,现代控制方法得到了大范围地推广与应用,不仅优化了传统的导弹控制系统,同时还进一步促进了导弹控制系统优化设计技术的快速发展。比较有代表性的现代控制方法主要有以下几个方面:

  4.1 滑模变结构控制

  滑模变结构控制是一种用于非线性路径的系统控制方法,该系统反应快、超调量小、系统结构简单,且具有稳定性和抗干扰性等优势,因此该系统逐步在目前的飞行控制系统优化设计领域中开始被逐步采用。将主要针对经典控制法下导弹飞行过程中所存在的不确定性进行有效控制,一方面在结果方面,对导弹进行滑模变结构的优化设计,使得结构变得更加简单,便于控制,另一方面,在性能方面,该结构在一定程度上也提升其对外界干扰的鲁棒性。这是一种针对导弹控制系统所存在的不确定性进行有效地规避,同时排除外界干扰的一种有效结构,因此,在一定程度上将会增强导弹的定位准确性以及提升其排除干扰的能力,为导弹的高效服务提供了更好的结构。

  4.2 鲁棒控制

  鲁棒控制是提高控制系统精确性的重要控制方法。其主要的原理是针对动态路径的变化,进一步确定系统在下一个阶段的设置参数,因此其参数的动态设置,可以提高控制系统的动态稳定性。由于控制系统的鲁棒性和动态性能很难同时实现,鲁棒控制以降低系统动态性能来提升系统的强鲁棒性,总体而言设计方面还是存在一定的缺陷。随着科技不断进步,鲁棒控制的方法也开始逐步进行优化设计,其动态性能也得到了有效提升,其系统的控制也变得更加。

  4.3 反馈线性化控制

  反馈线性化的基本思想是利用全状态反馈抵消原系统中的非线性特性,得到伪线性系统,然后应用线性理论对系统进行综合。反馈线性化方法可分为微分几何方法和非线性动态逆方法。采用反馈线性化方法要求已知被控对象精确的数学模型,而实际系统的精确数学模型通常是难以得到的,因此,采用该方法设计的导弹控制系统的鲁棒性能较差。

  4.4 反演控制

  反演控制是将复杂的非线性系统分解为不超过系统阶数的若干个子系统,然后根据李亚普诺夫稳定性定理设计每个子系统的李亚普诺夫函数和中间虚拟控制量,一直“后退”到整个系统,最后将它们集成起来实现控制律的设计。其关键是令某些状态为另一些状态的虚拟控制输入,最终找到一个李亚普诺夫函数,从而推出一个使整个系统闭环稳定的控制律。

  5 结论

  随着飞行要求地不断提升,导弹控制系统的性能优化的技术要求也随之越来越高。目前,经典控制方法已经不能满足导弹飞行的要求,然而现代的控制方法虽然相对于经典控制方法在技术上面有所提升,但还是有其缺陷的地方,而复合控制方法能够满足现代飞行的要求,为导弹控制系统的优化提供了新的路径。

  参考文献

  [1]赖鹏,危志英,蔡善军,等.导弹用捷联惯导系统加速度计零偏误差校准方案研究[j].战术导弹控制技术,2004,46(3):53-59.

  [2]张鹏飞,王宇,龙兴武,等.加速度计温度补偿模型的研究[j].传感技术学报,2007,20(5):1012-1016.

  作者单位

  92337部队 辽宁省大连市 116023

  
看了“导弹管理论文”的人还看:

1.部队武器装备管理论文

2.有关部队人员管理论文

3.浅谈大型项目管理论文

4.军事战略研究论文

5.军事理论论文范文